Ecuaciones de primer orden

ecuación diferencial parcial

En matemáticas, una ecuación diferencial ordinaria (EDO) es una ecuación diferencial que contiene una o más funciones de una variable independiente y las derivadas de esas funciones[1] El término ordinario se utiliza en contraste con el término ecuación diferencial parcial que puede ser con respecto a más de una variable independiente[2].

Entre las ecuaciones diferenciales ordinarias, las ecuaciones diferenciales lineales juegan un papel destacado por varias razones. La mayoría de las funciones elementales y especiales que se encuentran en la física y la matemática aplicada son soluciones de ecuaciones diferenciales lineales (véase Función holonómica). Cuando los fenómenos físicos se modelan con ecuaciones no lineales, generalmente se aproximan mediante ecuaciones diferenciales lineales para facilitar su solución. Las pocas EDO no lineales que pueden resolverse de forma explícita suelen resolverse transformando la ecuación en una EDO lineal equivalente (véase, por ejemplo, la ecuación de Riccati).

Algunas EDO pueden resolverse explícitamente en términos de funciones e integrales conocidas. Cuando esto no es posible, puede ser útil la ecuación para calcular la serie de Taylor de las soluciones. Para los problemas aplicados, los métodos numéricos para las ecuaciones diferenciales ordinarias pueden proporcionar una aproximación de la solución.

ecuación diferencial homogénea

Parece que estás en un dispositivo con un ancho de pantalla «estrecho» (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas de este sitio, es mejor verlo en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lateral de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

->  Para que sirve angular

Como veremos en este capítulo, no hay una fórmula general para la solución de \ ~(\eqref{eq:eq1}\). Lo que haremos en su lugar es ver varios casos especiales y ver cómo resolverlos. También veremos algo de la teoría detrás de las ecuaciones diferenciales de primer orden, así como algunas aplicaciones de las ecuaciones diferenciales de primer orden. A continuación se muestra una lista de los temas tratados en este capítulo.

Ecuaciones lineales – En esta sección resolvemos ecuaciones diferenciales lineales de primer orden, es decir, ecuaciones diferenciales de la forma \(y’ + p(t) y = g(t)\Nde). Damos una visión general en profundidad del proceso utilizado para resolver este tipo de ecuaciones diferenciales, así como una derivación de la fórmula necesaria para el factor integrador utilizado en el proceso de solución.

fórmula de la ecuación diferencial de primer orden

Aquí, \(F\) es una función de tres variables que etiquetamos \(t\), \(y\), y \(\dot{y}\). Se entiende que \(\dot{y}\) aparecerá explícitamente en la ecuación aunque \(t\) y \(y\) no necesitan. El término «primer orden» significa que la primera derivada de \(y\) aparece, pero ninguna derivada de orden superior lo hace.

->  Que es un etl

La ecuación general de primer orden es demasiado general, es decir, no podemos describir métodos que funcionen con todas, o incluso con una gran parte de ellas. Podemos avanzar con tipos específicos de ecuaciones diferenciales de primer orden. Por ejemplo, se puede decir mucho sobre ecuaciones de la forma \(\dot{y} = \phi (t, y)\) donde \(\phi \) es una función de las dos variables \(t\) y \(y\). Bajo condiciones razonables sobre \(\phi\), dicha ecuación tiene solución y el correspondiente problema de valor inicial tiene una solución única. Sin embargo, en general, estas ecuaciones pueden ser muy difíciles o imposibles de resolver explícitamente.

Consideremos este ejemplo específico de un problema de valor inicial para la ley de enfriamiento de Newton: \(\dot y = 2(25-y)\), \(y(0)=40\). Primero observamos que si \(y(t_0) = 25\), el lado derecho de la ecuación diferencial es cero, y por tanto la función constante \(y(t)=25\) es una solución de la ecuación diferencial. No es una solución del problema de valor inicial, ya que \(y(0)\ no=40\). (La interpretación física de esta solución constante es que si un líquido está a la misma temperatura que sus alrededores, entonces el líquido permanecerá a esa temperatura). Mientras \(y\) no sea 25, podemos reescribir la ecuación diferencial como

factor integrador de una ecuación diferencial de primer orden

En muchos campos como la física, la biología o los negocios, a menudo se conoce o se supone una relación entre alguna cantidad desconocida y su tasa de cambio, que no implica ninguna derivada superior. Por ello, resulta interesante estudiar las ecuaciones diferenciales de primer orden en particular.

->  Se puede ganar dinero por internet

Una ecuación diferencial de primer orden es una ecuación de la forma \(F(t, y, y’)=0text{.}\) Una solución de una ecuación diferencial de primer orden es una función \(f(t)\) que hace que \ds F(t,f(t),f'(t))=0\) para todo valor de \(t\text{. Se entiende que la variable \ds F(t,f(t,f’))=0) para cualquier valor de \text{…}) Aquí, \ds F es una función de tres variables que etiquetamos como \text{,}) \ts{,} y \ts{,}) Se entiende que \ts{,} aparecerá explícitamente en la ecuación, aunque \ts{,t} y \ts{,y} no es necesario. La propia variable \(y\) depende de \(t\text{,}\) por lo que se entiende que \(y’\) debe ser la derivada de \(y\) con respecto a \(t\text{,}\) Dado que sólo aparece la primera derivada de \(y\), pero ninguna derivada de orden superior, se trata de una ecuación diferencial de primer orden.

Esta web utiliza cookies propias para su correcto funcionamiento. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad