Ecuaciones diferenciales primer orden

Preguntas sobre ecuaciones diferenciales de primer orden

Parece que estás en un dispositivo con un ancho de pantalla «estrecho» (es decir, probablemente estés en un teléfono móvil). Debido a la naturaleza de las matemáticas en este sitio, es mejor verlas en modo apaisado. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lateral de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

Como veremos en este capítulo, no existe una fórmula general para la solución de \(\eqref{eq:eq1}\). Lo que haremos en su lugar es ver varios casos especiales y ver cómo resolverlos. También vamos a ver algo de la teoría detrás de las ecuaciones diferenciales de primer orden, así como algunas aplicaciones de las ecuaciones diferenciales de primer orden. A continuación se muestra una lista de los temas tratados en este capítulo.

Ecuaciones lineales – En esta sección resolvemos ecuaciones diferenciales lineales de primer orden, es decir, ecuaciones diferenciales de la forma \(y’ + p(t) y = g(t)\Nde). Damos una visión general en profundidad del proceso utilizado para resolver este tipo de ecuaciones diferenciales, así como una derivación de la fórmula necesaria para el factor integrador utilizado en el proceso de solución.

Calculadora de ecuaciones diferenciales de primer orden

Una ecuación diferencial lineal homogénea de primer orden es una ecuación de la forma \ds y’ + p(t)y=0\) o equivalentemente \ds y’ = -p(t)y\text{.})Ya hemos visto una ecuación diferencial lineal homogénea de primer orden, a saber, el modelo simple de crecimiento y decaimiento \ds =ky\text{.})

->  Minecraft en la web

Como se puede adivinar, una ecuación diferencial lineal no homogénea de primer orden tiene la forma \ds y’ + p(t)y = f(t)\text{.}) No sólo está estrechamente relacionado en forma a la ecuación lineal homogénea de primer orden, podemos utilizar lo que sabemos acerca de la resolución de ecuaciones homogéneas para resolver la ecuación lineal general.

Vamos a discutir ahora cómo podemos encontrar todas las soluciones de una ecuación diferencial lineal no homogénea de primer orden. Supongamos que \(y_1(t)\Ny \N(y_2(t)\Nson soluciones de \N(\ds y’ + p(t)y = f(t)\Ntext{.}) Dejemos que \ds g(t)=y_1-y_2text{.}) Entonces

En otras palabras, \(\ds g(t)=y_1-y_2) es una solución de la ecuación homogénea \(\ds y’ + p(t)y = 0text{.}\} Dando la vuelta a esto, cualquier solución de la ecuación lineal \(\ds y’ + p(t)y = f(t)\text{,}) llámese \(y_1\text{,}) puede escribirse como \(y_2+g(t)\text{,}) para algún \(y_2\) particular y alguna solución \(g(t)\) de la ecuación homogénea \(\ds y’ + p(t)y = 0\text{. }\) Como ya sabemos encontrar todas las soluciones de la ecuación homogénea, encontrar una sola solución de la ecuación \ds y’ + p(t)y = f(t)\) nos dará todas ellas.

Ecuación diferencial

En matemáticas, una ecuación diferencial ordinaria (EDO) es una ecuación diferencial que contiene una o más funciones de una variable independiente y las derivadas de esas funciones[1] El término ordinario se utiliza en contraste con el término ecuación diferencial parcial que puede ser con respecto a más de una variable independiente[2].

->  Lienzo de modelo de negocios

Entre las ecuaciones diferenciales ordinarias, las ecuaciones diferenciales lineales juegan un papel destacado por varias razones. La mayoría de las funciones elementales y especiales que se encuentran en la física y la matemática aplicada son soluciones de ecuaciones diferenciales lineales (véase Función holonómica). Cuando los fenómenos físicos se modelan con ecuaciones no lineales, generalmente se aproximan mediante ecuaciones diferenciales lineales para facilitar su solución. Las pocas EDO no lineales que pueden resolverse de forma explícita suelen resolverse transformando la ecuación en una EDO lineal equivalente (véase, por ejemplo, la ecuación de Riccati).

Algunas EDO pueden resolverse explícitamente en términos de funciones e integrales conocidas. Cuando esto no es posible, puede ser útil la ecuación para calcular la serie de Taylor de las soluciones. Para los problemas aplicados, los métodos numéricos para las ecuaciones diferenciales ordinarias pueden proporcionar una aproximación de la solución.

Ecuación diferencial lineal de primer orden

Parece que estás en un dispositivo con un ancho de pantalla «estrecho» (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas de este sitio, es mejor verlo en modo apaisado. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones saldrán por el lado de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

El primer caso especial de ecuaciones diferenciales de primer orden que veremos es la ecuación diferencial lineal de primer orden. En este caso, a diferencia de la mayoría de los casos de primer orden que veremos, podemos derivar una fórmula para la solución general. La solución general se deriva a continuación. Sin embargo, le sugerimos que no memorice la fórmula en sí. En lugar de memorizar la fórmula deberías memorizar y entender el proceso que voy a utilizar para derivar la fórmula. En realidad, la mayoría de los problemas son más fáciles de resolver utilizando el proceso en lugar de la fórmula.

->  Tutorial para aprender ingles

Entonces, veamos cómo resolver una ecuación diferencial lineal de primer orden. Recuerde que a medida que avanzamos a través de este proceso que el objetivo es llegar a una solución que está en la forma \ (y = y\left( t \right)\). A veces es fácil perder de vista el objetivo cuando pasamos por este proceso por primera vez.

Esta web utiliza cookies propias para su correcto funcionamiento. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad